Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(27): 13602-13610, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31152131

RESUMO

Here, we investigated the properties of presynaptic N-methyl-d-aspartate receptors (pre-NMDARs) at corticohippocampal excitatory connections between perforant path (PP) afferents and dentate granule cells (GCs), a circuit involved in memory encoding and centrally affected in Alzheimer's disease and temporal lobe epilepsy. These receptors were previously reported to increase PP release probability in response to gliotransmitters released from astrocytes. Their activation occurred even under conditions of elevated Mg2+ and lack of action potential firing in the axons, although how this could be accomplished was unclear. We now report that these pre-NMDARs contain the GluN3a subunit conferring them low Mg2+ sensitivity. GluN3a-containing NMDARs at PP-GC synapses are preponderantly presynaptic vs. postsynaptic and persist beyond the developmental period. Moreover, they are expressed selectively at medial-not lateral-PP axons and act to functionally enhance release probability specifically of the medial perforant path (MPP) input to GC dendrites. By controlling release probability, GluN3a-containing pre-NMDARs also control the dynamic range for long-term potentiation (LTP) at MPP-GC synapses, an effect requiring Ca2+ signaling in astrocytes. Consistent with the functional observations, GluN3a subunits in MPP terminals are localized at sites away from the presynaptic release sites, often facing astrocytes, in line with a primary role for astrocytic inputs in their activation. Overall, GluN3A-containing pre-NMDARs emerge as atypical modulators of dendritic computations in the MPP-GC memory circuit.


Assuntos
Astrócitos/fisiologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Pré-Sinápticos/fisiologia , Animais , Autorreceptores/metabolismo , Autorreceptores/fisiologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Vias Neurais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
2.
Cell ; 163(7): 1730-41, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686654

RESUMO

The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.


Assuntos
Astrócitos/metabolismo , Giro Denteado/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Memória , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Aprendizagem , Camundongos , Esclerose Múltipla/fisiopatologia , Piperidinas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...